Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Front Oncol ; 14: 1333020, 2024.
Article in English | MEDLINE | ID: mdl-38347846

ABSTRACT

Objective: To develop and validate a multiparametric MRI-based radiomics model for prediction of microsatellite instability (MSI) status in patients with endometrial cancer (EC). Methods: A total of 225 patients from Center I including 158 in the training cohort and 67 in the internal testing cohort, and 132 patients from Center II were included as an external validation cohort. All the patients were pathologically confirmed EC who underwent pelvic MRI before treatment. The MSI status was confirmed by immunohistochemistry (IHC) staining. A total of 4245 features were extracted from T2-weighted imaging (T2WI), contrast enhanced T1-weighted imaging (CE-T1WI) and apparent diffusion coefficient (ADC) maps for each patient. Four feature selection steps were used, and then five machine learning models, including Logistic Regression (LR), k-Nearest Neighbors (KNN), Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF), were built for MSI status prediction in the training cohort. Receiver operating characteristics (ROC) curve and decision curve analysis (DCA) were used to evaluate the performance of these models. Results: The SVM model showed the best performance with an AUC of 0.905 (95%CI, 0.848-0.961) in the training cohort, and was subsequently validated in the internal testing cohort and external validation cohort, with the corresponding AUCs of 0.875 (95%CI, 0.762-0.988) and 0.862 (95%CI, 0.781-0.942), respectively. The DCA curve demonstrated favorable clinical utility. Conclusion: We developed and validated a multiparametric MRI-based radiomics model with gratifying performance in predicting MSI status, and could potentially be used to facilitate the decision-making on clinical treatment options in patients with EC.

2.
Drug Resist Updat ; 73: 101059, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295753

ABSTRACT

Patients with bladder cancer (BCa) frequently acquires resistance to platinum-based chemotherapy, particularly cisplatin. This study centered on the mechanism of cisplatin resistance in BCa and highlighted the pivotal role of lactylation in driving this phenomenon. Utilizing single-cell RNA sequencing, we delineated the single-cell landscape of Bca, pinpointing a distinctive subset of BCa cells that exhibit marked resistance to cisplatin with association with glycolysis metabolism. Notably, we observed that H3 lysine 18 lactylation (H3K18la) plays a crucial role in activating the transcription of target genes by enriching in their promoter regions. Targeted inhibition of H3K18la effectively restored cisplatin sensitivity in these cisplatin-resistant epithelial cells. Furthermore, H3K18la-driven key transcription factors YBX1 and YY1 promote cisplatin resistance in BCa. These findings enhance our understanding of the mechanisms underlying cisplatin resistance, offering valuable insights for identifying novel intervention targets to overcome drug resistance in Bca.


Subject(s)
Cisplatin , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Histones/genetics , Histones/metabolism , Single-Cell Gene Expression Analysis , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
3.
Polymers (Basel) ; 15(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139927

ABSTRACT

In order to improve the performance of desert sand concrete, polypropylene fiber (PF) and glass fiber (GF) were used to prepare desert sand concrete (DSC) with different fiber and volume content, and the basic mechanical properties, such as cube compressive, tensile and flexural strengths, were tested and studied. Based on the mercury injection method (MIP) and scanning electron microscopy (SEM), the evolution of pore structure and interface structure was analyzed. The mechanism of fiber toughening was revealed at the microscopic level. The results show that the slump of DSC decreases with the increase in fiber content. The slump of glass-fiber-reinforced DSC (GFRDSC) is smaller than that of polypropylene-fiber-reinforced DSC (PFRDSC). The strength enhancement of DSC by fibers is in the order of flexural strength > split tensile strength > compressive strength. The flexural strength of hybrid-fiber-reinforced DSC (HyFRDSC) (0.1% PF + 0.1% GF) is increased by 40.7%. Meanwhile, fibers can improve the toughness of DSC. The MIP results show that the porosity of HyFRDSC decreased by 50.01%, and the addition of fiber can effectively refine the large pore size. The SEM results show that the incorporation of PF and GF causes the formation of a uniform and dense structure between the fibers, cement and aggregate. The two can give full play to the crack-resisting and toughening effect in different loading stages, thus improving the macromechanical properties of DSC.

4.
Exp Ther Med ; 25(5): 213, 2023 May.
Article in English | MEDLINE | ID: mdl-37123216

ABSTRACT

Endotoxin-induced acute kidney injury (AKI) is commonly observed in clinical practice. Renal tubular epithelial cell (RTEC) pyroptosis is one of the main factors leading to the development of endotoxin-induced AKI. Mitochondrial dysfunction can lead to pyroptosis. However, the biological pathways involved in the potential lipopolysaccharide (LPS)-induced pyroptosis of RTECs, notably those associated with mitochondrial dysfunction, are poorly understood. Previous studies have demonstrated that heme oxygenase (HO)-1 confers cell protection via the induction of PTEN-induced putative kinase 1 (PINK1) expression through PTEN to regulate mitochondrial fusion/fission during endotoxin-induced AKI in vivo. Therefore, the present study investigated the role of HO-1/PINK1 in maintaining mitochondrial function and inhibiting the pyroptosis of RTECs exposed to LPS. Primary cultures of RTECs were obtained from wild-type (WT) and PINK1-knockout (PINK1KO) rats. An in vitro model of endotoxin-associated RTEC injury was established following treatment of the cells with LPS. The WT RTECs were divided into the control, LPS, Znpp + LPS and Hemin + LPS groups, and the PINK1KO RTECs were divided into the control, LPS and Hemin + LPS groups. RTECs were exposed to LPS for 6 h to assess cell viability, inflammation, pyroptosis and mitochondrial function. In the LPS-treated RTECs, the mRNA and protein expression levels of HO-1 and PINK1 were upregulated. Cell viability, adenosine triphosphate (ATP) levels and the mitochondrial oxygen consumption rate were decreased, whereas the inflammatory response, pyroptosis and mitochondrial reactive oxygen species (ROS) levels were increased. The cell inflammatory response and the induction of pyroptosis were inhibited, whereas the levels of mitochondrial ROS were decreased. In addition, the cell viability and ATP levels were increased in the WT RTECs following the upregulation of HO-1 expression. These effects were reversed by the downregulation of HO-1 expression. However, no statistically significant differences were noted between the LPS and the Hemin + LPS groups in the PINK1KO RTECs. Collectively, the findings of the present study indicate that HO-1 inhibits inflammation and regulates mitochondrial function by inhibiting the pyroptosis of LPS-exposed RTECs via PINK1.

5.
Res Vet Sci ; 158: 84-95, 2023 May.
Article in English | MEDLINE | ID: mdl-36958176

ABSTRACT

Porcine Reproductive and Respiratory Syndrome (PRRS) threats the swine industry seriously. The spread of live vaccine virus leads to the emergence of recombinant virus, which brings biosafety problems. The replication-deficient virus as a vaccine candidate would avoid this problem. In the present study, the recombinant lentiviral plasmid pLV-EF1α-EGFP-2A-ORF4 was co-transfected with lentivirus in HEK293FT cells. The transfection mixture was harvested and transduced into Marc-145 to screen a cell line stably expressing the PRRSV ORF4 with puromycin. The cell line Marc-145-GP4 was confirmed with PCR, RT-PCR, IFA, and Western blotting using a monoclonal antibody against Glycoprotein 4 (GP4) of PRRSV. To obtain a replication-deficient PRRSV, Western blotting the recombinant plasmid pNM09-ΔORF4 was constructed by Overlap PCR and DNA recombinant technology with the pNM09 as a backbone plasmid. The pNM09-ΔORF4 was transfected into Marc-145-GP4 with electroporation after transcription in vitro. The replication-deficient virus was rescued on Marc-145-GP4 cells with trans-complementation of ORF4 gene and verified by RT-PCR and IFA. The results indicated that a cell line Marc-145-GP4 stably expressed PRRSV ORF4 was obtained. The recombinant GP4 was successfully expressed and obtained a monoclonal antibody Anti-A-GP4-70, which can specifically react with the virus. Finally, the replication-deficient virus rNM09-ΔORF4 can be rescued with low titer and could only reproduce on the Marc-145-GP4 cells. Unfortunately, the rNM09-ΔORF4 showed too low virus replication titer to determine it. This study lays the foundation for the rapid detection of PRRS and the functional study of GP4 and provides experience for replication-deficient PRRSV.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Viral Load/veterinary , Cell Line , Glycoproteins , Antibodies, Monoclonal , Virus Replication/genetics
6.
Front Immunol ; 13: 954836, 2022.
Article in English | MEDLINE | ID: mdl-36119059

ABSTRACT

Accurate prediction of Bacillus Calmette-Guérin (BCG) response is essential to identify bladder cancer (BCa) patients most likely to respond sustainably, but no molecular marker predicting BCG response is available in clinical routine. Therefore, we first identified that fibroblast growth factor binding protein 1 (FGFBP1) was upregulated in failures of BCG therapy, and the increased FGFBP1 had a poor outcome for BCa patients in the E-MTAB-4321 and GSE19423 datasets. These different expression genes associated with FGFBP1 expression are mainly involved in neutrophil activation, neutrophil-mediated immunity, and tumor necrosis factor-mediated signal pathways in biological processes. A significant positive correlation was observed between FGFBP1 expression and regulatory T-cell (Treg) infiltration by the Spearman correlation test in the BCG cohort (r = 0.177) and The Cancer Genome Atlas (TCGA) cohort (r = 0.176), suggesting that FGFBP1 may influence the response of BCa patients to BCG immunotherapy through immune escape. Though FGFBP1 expression was positively correlated with the expressions of PD-L1, CTLA4, and PDCD1 in TCGA cohort, a strong association between FGFBP1 and PD-L1 expression was only detected in the BCG cohort (r = 0.750). Furthermore, elevated FGFBP1 was observed in BCa cell lines and tissues in comparison to corresponding normal controls by RT-qPCR, Western blotting, and immunohistochemical staining. Increased FGFBP1 was further detected in the failures than in the responders by immunohistochemical staining. Notably, FGFBP1 is positively associated with PD-L1 expression in BCa patients with BCG treatment. To sum up, FGFBP1 in BCa tissue could be identified as a promising biomarker for the accurate prediction of BCG response in BCa.


Subject(s)
Mycobacterium bovis , Urinary Bladder Neoplasms , B7-H1 Antigen , BCG Vaccine/therapeutic use , Biomarkers , CTLA-4 Antigen , Fibroblast Growth Factors , Humans , Intercellular Signaling Peptides and Proteins , Tumor Necrosis Factor-alpha/therapeutic use , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
7.
Virus Res ; 320: 198899, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36030927

ABSTRACT

Infectious bovine rhinotracheitis (IBR) is caused by Bovine herpesvirus type 1 (BoHV-1), which seriously threatens the global cattle industry. Only vaccination to improve immunity is the most direct and effective means to prevent IBR. Attempts are being made to use subunit vaccines, deleted or recombinant viral vaccines to reduce or eradicate IBR. For investigating the immunological characteristics of glycoprotein B subunit vaccine in pattern animal guinea pigs, the partial glycoprotein B (gB) of BoHV-1 with dominant antigenic characteristic was selected. A recombinant prokaryotic expression vector pET-32a-gB with the truncated gB gene was constructed, expressed, identified and the purified proteins were used to immunize guinea pigs. The immune effect of the subunit vaccine was assessed by monitoring clinical symptoms, viral load, antibody secretion, and histopathological changes. The results indicated that guinea pigs immunized with the gB subunit vaccine produced high levels of anti-gB antibodies and virus-neutralizing antibodies. The gB subunit vaccine significantly reduced viral shedding and lung tissue damage after IBRV challenge. The animals inoculated the gB subunit vaccine also had less virus reactivation. Its protective effect on viral shedding and tissue damage was similar to that of inactivated BoHV-1 vaccine. This work is a proof-of-concept study of subunit vaccine-induced protection against BoHV-1. And it is expected to be a candidate vaccine for the prevention of IBR.


Subject(s)
Herpesvirus 1, Bovine , Infectious Bovine Rhinotracheitis , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cattle , Guinea Pigs , Herpesvirus 1, Bovine/genetics , Infectious Bovine Rhinotracheitis/prevention & control , Vaccines, Inactivated , Vaccines, Subunit/genetics , Viral Vaccines/genetics
8.
Front Microbiol ; 13: 950402, 2022.
Article in English | MEDLINE | ID: mdl-35935186

ABSTRACT

Since porcine reproductive and respiratory syndrome virus (PRRSV) was first described in China in 1996, several genetically distinct strains of PRRSV have emerged with varying pathogenicity and severity, thereby making the prevention and control of PRRS more difficult in China and worldwide. Between 2017 and 2021, the detection rate of NADC34-like strain in China increased. To date, NADC34-like strains have spread to 10 Chinese provinces and have thus developed different degrees of pathogenicity and mortality. In this review, we summarize the history of NADC34-like strains in China and clarify the prevalence, genomic characteristics, restriction fragment length polymorphisms, recombination, pathogenicity, and vaccine status of this strain in China. In so doing, this study aims to provide a basis for the further development of prevention and control measures targeting the NADC34-like strain.

9.
Viruses ; 14(8)2022 07 25.
Article in English | MEDLINE | ID: mdl-35893683

ABSTRACT

Bovine respiratory disease complex (BRDC) is a comprehensive disease in cattle caused by various viral and bacterial infections. Among them, bovine herpesvirus type I (BoHV-1) and bovine viral diarrhea virus (BVDV) play important roles and have caused huge financial losses for the cattle industry worldwide. At present, vaccines against BRDC include trivalent attenuated BoHV-1, BVDV-1, and BVDV-2 live vaccines, BoHV-1 live attenuated vaccines, and BoHV-1/BVDV bivalent live attenuated vaccines, which have limitations in terms of their safety and efficacy. To solve these problems, we optimized the codon of the BVDV-1 E2 gene, added the signal peptide sequence of the BoHV-1 gD gene, expressed double BVDV-1 E2 glycoproteins in tandem at the BoHV-1 gE gene site, and constructed a BoHV-1 genetics-engineered vectored vaccine with gE gene deletion, named BoHV-1 gE/E2-Linker-E2+ and BoHV-1 ΔgE. This study compared the protective effects in BoHV-1, BoHV-1 ΔgE, BoHV-1 gE/E2-Linker-E2+, and BVDV-1 inactivated antigen immunized guinea pigs and calves. The results showed that BoHV-1 gE/E2-Linker-E2+ could successfully induce guinea pigs and calves to produce specific neutralizing antibodies against BVDV-1. In addition, after BoHV-1 and BVDV-1 challenges, BoHV-1 gE/E2-Linker-E2+ can produce a specific neutralizing antibody response against BoHV-1 and BVDV-1 infections. Calves immunized with this type of virus can be distinguished as either vaccinated animals (gE-) or naturally infected animals (gE+). In summary, our data suggest that BoHV-1 gE/E2-Linker-E2+ and BoHV-1 ΔgE have great potential to prevent BVDV-1 or BoHV-1 infection.


Subject(s)
Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Herpesvirus 1, Bovine , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cattle , Diarrhea , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/genetics , Guinea Pigs , Herpesvirus 1, Bovine/genetics , Vaccines, Attenuated/genetics , Vaccines, Combined , Viral Vaccines/genetics
10.
Vet Sci ; 9(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35448664

ABSTRACT

Bovine herpesvirus type I (BoHV-1) is an important pathogen that causes respiratory disease in bovines. The disease is prevalent worldwide, causing huge economic losses to the cattle industry. Gene-deficient vaccines with immunological markers to distinguish them from wild-type infections have become a mainstream in vaccine research and development. In order to knock out the gE gene BoHV-1, we employed the CRISPR/Cas9 system. Interesting phenomena were observed at the single guide RNA (sgRNA) splicing site, including gene insertion, gene deletion, and the inversion of 5' and 3' ends of the sgRNA splicing site. In addition to the deletion of the gE gene, the US9 gene, and the non-coding regions of gE and US9, it was found that the US4 sequence, US6 sequence, and part of the US7 sequence were inserted into the EGFP sgRNA splicing site and the 3' end of the EGFP sequence was deleted. Similar to the BoHV-1 parent, the BoHV-1 mutants induced high neutralizing antibodies titer levels in mice. In summary, we developed a series of recombinant gE-deletion BoHV-1 samples using the CRISPR/Cas9 gene editing system. The mutant viruses with EGFP+ or EGFP- will lay the foundation for research on BoHV-1 and vaccine development in the future.

11.
Mol Biol Evol ; 39(4)2022 04 11.
Article in English | MEDLINE | ID: mdl-35325184

ABSTRACT

Ciliated protists are among the oldest unicellular organisms with a heterotrophic lifestyle and share a common ancestor with Plantae. Unlike any other eukaryotes, there are two distinct nuclei in ciliates with separate germline and somatic cell functions. Here, we assembled a near-complete macronuclear genome of Fabrea salina, which belongs to one of the oldest clades of ciliates. Its extremely minimized genome (18.35 Mb) is the smallest among all free-living heterotrophic eukaryotes and exhibits typical streamlined genomic features, including high gene density, tiny introns, and shrinkage of gene paralogs. Gene families involved in hypersaline stress resistance, DNA replication proteins, and mitochondrial biogenesis are expanded, and the accumulation of phosphatidic acid may play an important role in resistance to high osmotic pressure. We further investigated the morphological and transcriptomic changes in the macronucleus during sexual reproduction and highlighted the potential contribution of macronuclear residuals to this process. We believe that the minimized genome generated in this study provides novel insights into the genome streamlining theory and will be an ideal model to study the evolution of eukaryotic heterotrophs.


Subject(s)
Ciliophora , Genome, Protozoan , Ciliophora/genetics , DNA, Protozoan/genetics , Introns , Macronucleus/genetics , Sequence Analysis, DNA
12.
Zygote ; 30(3): 358-364, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34676817

ABSTRACT

Methomyl is a broad-spectrum carbamate insecticide that has a variety of toxic effects on humans and animals. However, there have been no studies on the toxicity of methomyl in female mammalian oocytes. This study investigated the toxic effects of environmental oestrogen methomyl exposure on mouse oocyte maturation and its possible mechanisms. Our results indicated that methomyl exposure inhibited polar body extrusion in mouse oocytes. Compared with that in the control group, in the methomyl treatment group, superoxide anion free radicals in oocytes were significantly increased. In addition, the mitochondrial membrane potential of metaphase II stage oocytes in the methomyl treatment group was significantly decreased, resulting in reduced mouse oocyte quality. After 8.5 h of exposure to methomyl, metaphase I stage mouse oocytes displayed an abnormal spindle morphology. mRNA expression of the pro-apoptotic genes Bax and Caspase-3 in methomyl-treated oocytes increased, which confirmed the apoptosis. Collectively, our results indicated that mouse oocyte maturation is defective after methomyl treatment at least through disruption of spindle morphology, mitochondrial function and by induction of oxidative stress.


Subject(s)
Methomyl , Oocytes , Animals , Female , Mammals , Metaphase , Methomyl/metabolism , Methomyl/pharmacology , Mice , Mitochondria , Oogenesis
13.
J Cardiovasc Pharmacol ; 79(1): e1-e10, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34654782

ABSTRACT

ABSTRACT: In the context of diabetes mellitus, various pathological changes cause tissue ischemia and hypoxia, which can lead to the compensatory formation of neovascularization. However, disorders of the internal environment and dysfunctions of various cells contribute to the dysfunction of neovascularization. Although the problems of tissue ischemia and hypoxia have been partially solved, neovascularization also causes many negative effects. In the process of small blood vessel renewal, pericytes are extremely important for maintaining the normal growth and maturation of neovascularization. Previously, our understanding of pericytes was very limited, and the function of pericytes was not yet clear. Recently, multiple new functions of pericytes have been identified, affecting various processes in angiogenesis and relating to various diseases. Therefore, the importance of pericytes has gradually become apparent. This article presents the latest research progress on the role of pericytes in diabetic angiogenesis, characterizes pericytes, summarizes various potential therapeutic targets, and highlights research directions for the future treatment of various diabetes-related diseases.


Subject(s)
Diabetic Angiopathies/pathology , Neovascularization, Pathologic , Pericytes/pathology , Angiogenic Proteins/metabolism , Animals , Cell Hypoxia , Diabetic Angiopathies/metabolism , Humans , Pericytes/metabolism , Phenotype , Signal Transduction
14.
Acad Radiol ; 29(8): e128-e138, 2022 08.
Article in English | MEDLINE | ID: mdl-34961658

ABSTRACT

OBJECTIVE: To investigate the potential value of radiomics features based on preoperative multiparameter MRI in predicting disease-free survival (DFS) in patients with local advanced rectal cancer (LARC). METHODS: We identified 234 patients with LARC who underwent preoperative MRI, including T2-weighted, diffusion kurtosis imaging, and contrast enhanced T1-weighted. All patients were randomly divided into the training (n = 164) and validation (n = 70) cohorts. 414 features were extracted from the tumor from above sequences and the radiomics signature was then generated, mainly based on feature stability and Cox proportional hazards model. Two models, integrating pre- and postoperative variables, were constructed to validate the radiomics signatures for DFS estimation. RESULTS: The radiomics signature, composed of six DFS-related features, was significantly associated with DFS in the training and validation cohorts (both p < 0.001). The radiomics signature and MR-defined extramural venous invasion (mrEMVI) were identified as the independent predictor of DFS both in the pre- and postoperative models. In both cohorts, the two radiomics-based models exhibited better prediction performance (C-index ≥0.77, all p < 0.05) than the corresponding clinical models, with positive net reclassification improvement and lower Akaike information criterion (AIC). Decision curve analysis also confirmed their clinical usefulness. The radiomics-based models could categorize LARC patients into high- and low-risk groups with distinct profiles of DFS (all p < 0.05). CONCLUSION: The proposed radiomics models with pre- and postoperative features have the potential to predict DFS, and may provide valuable guidance for the future individualized management in patients with LARC.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Neoplasms, Second Primary , Rectal Neoplasms , Disease-Free Survival , Humans , Magnetic Resonance Imaging/methods , Neoplasms, Second Primary/pathology , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/surgery , Rectum/pathology , Retrospective Studies
15.
J Diabetes Res ; 2021: 4461311, 2021.
Article in English | MEDLINE | ID: mdl-34631895

ABSTRACT

Vascular calcification is the transformation of arterial wall mesenchymal cells, particularly smooth muscle cells (SMCs), into osteoblast phenotypes by various pathological factors. Additionally, vascular transformation mediates the abnormal deposition of calcium salts in the vascular wall, such as intimal and media calcification. Various pathological types have been described, such as calcification and valve calcification. The incidence of vascular calcification in patients with diabetes is much higher than that in nondiabetic patients, representing a critical cause of cardiovascular events in patients with diabetes. Because basic research on the clinical transformation of vascular calcification has yet to be conducted, this study systematically expounds on the risk factors for vascular calcification, vascular bed differences, sex differences, ethnic differences, diagnosis, severity assessments, and treatments to facilitate the identification of a new entry point for basic research and subsequent clinical transformation regarding vascular calcification and corresponding clinical evaluation strategies.


Subject(s)
Diabetes Mellitus/epidemiology , Diabetic Angiopathies/epidemiology , Epidemiologic Research Design , Vascular Calcification/epidemiology , Animals , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/pathology , Humans , Incidence , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phenotype , Prevalence , Prognosis , Risk Assessment , Risk Factors , Vascular Calcification/metabolism , Vascular Calcification/pathology
16.
Eur J Radiol ; 144: 109963, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34562744

ABSTRACT

PURPOSE: This study aimed to evaluate the potential role of diffusion kurtosis imaging (DKI)-derived parameters for assessing resistance to CRT in patients with Locally advanced rectal cancer (LARC) by using histogram analysis derived from whole-tumor volumes. METHOD: 136 consecutive patients with histologically confirmed rectal adenocarcinoma who underwent MRI examination before and after chemoradiotherapy were enrolled in our retrospective study. The parameters D, K, and conventional apparent diffusion coefficient (ADC) were measured using whole-tumor volume histogram analysis. The AJCC tumor regression grading (TRG) system was the standard reference (resistance: TRG 3; non-resistance: TRG 0-2). Receiver operating characteristic (ROC) curves were used for evaluating the diagnostic performance. RESULTS: Aside from the skew and kurtosis values, we found all the histogram metrics of D and ADC values significantly increased after CRT (all p < 0.001). In contrast, the histogram metrics of K values significantly decreased after CRT. The majority of percentiles metrics of D, K, and ADC values were correlated with tumor resistance before and after CRT (P < 0.05), except for the skew and kurtosis values. Regarding the comparison of the diagnostic performance of all the histogram metrics, the percentage Dmean change (ΔDmean) showed the highest AUC value of 0.939, and the corresponding sensitivity, specificity, PPV, and NPV were 84.1% and 94.6%, 88.1% and 92.6%, respectively. CONCLUSIONS: These preliminary results demonstrated that DKI-derived histogram metrics, especially the pre-treatment metrics and ΔDmean, were useful to assess tumoral resistance to CRT and individual clinical management for patients with LARC.


Subject(s)
Adenocarcinoma , Rectal Neoplasms , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/therapy , Benchmarking , Chemoradiotherapy , Diffusion Magnetic Resonance Imaging , Humans , Neoadjuvant Therapy , Rectal Neoplasms/drug therapy , Rectal Neoplasms/therapy , Retrospective Studies , Sensitivity and Specificity
17.
Aging (Albany NY) ; 13(16): 20468-20480, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34424218

ABSTRACT

Survival outcomes in advanced urothelial cancer (UC) are dismal. Over the past years, immunotherapy remains an evolving treatment modality for these patients. This meta-analysis was performed to comprehensively evaluate the efficacy and safety of immune checkpoint inhibitors. For this purpose, 18 clinical trials comprising a total of 3,144 patients were identified from the PubMed database up to September 2020. Overall, the objective response rate (ORR) to PD-1/PD-L1 inhibitors was 0.20 [95% confidence intervals (CI) 0.17-0.23]. Furthermore, the pooled 1-year overall survival (OS) and 1-year progression-free survival (PFS) rates were 0.43 (95% CI 0.33-0.53) and 0.19 (95% CI 0.17-0.21), respectively. The summary rates of any-grade and grade ≥3 adverse events (AEs) were 0.66 (95% CI 0.58-0.74) and 0.13 (95% CI 0.09-0.18), respectively. Among the different subgroups, PD-1/PD-L1 inhibitors elicited a promising ORR in patients with lymph node-only metastasis compared to those with visceral metastasis (0.41 VS. 0.17). Additionally, patients with primary tumor in the lower tract had higher ORR compared to those with primary tumor in the upper tract (0.24 VS. 0.15). Briefly speaking, this immunotherapy protocol showed an encouraging efficacy and acceptable safety profile in the treatment of advanced UC. Moreover, our findings provided potential clinical significance for patients with lymph node-only metastasis or primary tumor in the lower tract. However, these exciting findings need further confirmation.


Subject(s)
B7-H1 Antigen/immunology , Immune Checkpoint Inhibitors/administration & dosage , Immunotherapy , Programmed Cell Death 1 Receptor/immunology , Urinary Bladder Neoplasms/therapy , Adult , Aged , Aged, 80 and over , B7-H1 Antigen/genetics , Female , Humans , Male , Middle Aged , Programmed Cell Death 1 Receptor/genetics , Progression-Free Survival , Randomized Controlled Trials as Topic , Treatment Outcome , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/mortality
18.
Quant Imaging Med Surg ; 11(6): 2354-2375, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34079707

ABSTRACT

BACKGROUND: Predicting the mutation statuses of 2 essential pathogenic genes [epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma (KRAS)] in non-small cell lung cancer (NSCLC) based on CT is valuable for targeted therapy because it is a non-invasive and less costly method. Although deep learning technology has realized substantial computer vision achievements, CT imaging being used to predict gene mutations remains challenging due to small dataset limitations. METHODS: We propose a multi-channel and multi-task deep learning (MMDL) model for the simultaneous prediction of EGFR and KRAS mutation statuses based on CT images. First, we decomposed each 3D lung nodule into 9 views. Then, we used the pre-trained inception-attention-resnet model for each view to learn the features of the nodules. By combining 9 inception-attention-resnet models to predict the types of gene mutations in lung nodules, the models were adaptively weighted, and the proposed MMDL model could be trained end-to-end. The MMDL model utilized multiple channels to characterize the nodule more comprehensively and integrate patient personal information into our learning process. RESULTS: We trained the proposed MMDL model using a dataset of 363 patients collected by our partner hospital and conducted a multi-center validation on 162 patients in The Cancer Imaging Archive (TCIA) public dataset. The accuracies for the prediction of EGFR and KRAS mutations were, respectively, 79.43% and 72.25% in the training dataset and 75.06% and 69.64% in the validation dataset. CONCLUSIONS: The experimental results demonstrated that the proposed MMDL model outperformed the latest methods in predicting EGFR and KRAS mutations in NSCLC.

19.
Res Vet Sci ; 136: 535-539, 2021 May.
Article in English | MEDLINE | ID: mdl-33882382

ABSTRACT

African swine fever (ASF) is one of the most devastating hemorrhagic infectious diseases that affect pigs and wild suids due to the lack of a vaccine or an effective treatment. The large dsDNA genome of African swine fever virus (ASFV) contains up to 167 ORFs that are predicted to encode proteins. Since its introduction to China in 2018, this genome has aroused the enthusiasm of researchers throughout the world. Here, we review the research progress on ASFV in recent years. Given the importance of this disease, this review will highlight recent discoveries in basic virology, focusing mainly on epidemiology, virulence, pathogenic mechanisms, diagnosis, vaccine development, and treatment; this will help in understanding virus-host interactions and disease prevention regarding ASFV.


Subject(s)
African Swine Fever Virus , African Swine Fever/epidemiology , Swine Diseases/epidemiology , Animals , China/epidemiology , Swine , Swine Diseases/virology
20.
J Cancer ; 12(1): 281-291, 2021.
Article in English | MEDLINE | ID: mdl-33391425

ABSTRACT

Our previous study showed that heterogeneous nuclear ribonucleoprotein F (hnRNP-F) could induce epithelial-mesenchymal transition and metastasis in bladder cancer (BC), however, the role and mechanism of hnRNP-F in mediating the proliferative ability of BC cells remain unclear. HnRNP-F promoted the proliferation of BC cells by using BC cell lines and cell counting kit-8 (CCK8), colony formation and flow cytometry assays in vitro. Furthermore, the association of hnRNP-F with the phosphoinositide 3­kinase (PI3K)/protein kinase B (AKT) signalling pathway was confirmed by western blotting after bioinformatic analysis. HnRNP-F expression was significantly decreased by treatment with the PI3K/AKT signalling pathway inhibitor LY294002, whereas hnRNP-F knockdown did not significantly affect PI3K or AKT expression, suggesting that hnRNP-F is likely a downstream target of the PI3K/AKT pathway. Forkhead box O1 (FOXO1) is a molecule downstream of PI3K/AKT and can be inhibited by phosphorylation. In addition, chromatin immunoprecipitation (ChIP) and luciferase reporter assays indicated that FOXO1 expression was negatively correlated with hnRNP-F expression as FOXO1 was found to bind to the promoter region of hnRNP-F mRNA and inhibit its transcription. To sum up, our findings suggest that hnRNP-F expression is regulated by the PI3K/AKT-mediated phosphorylation of FOXO1, with phosphorylation inhibiting FOXO1, which subsequently allows hnRNP-F to promote proliferation. This finding is a novel discovery in BC and could help reveal the mechanism of BC progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...